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Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect.
II. Dispersive waves
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Previous results on the scattering of surface waves by vertical vorticity on shallow water are generalized to
the case of dispersive water waves. Dispersion effects are treated perturbatively around the shallow water limit,
to first order in the ratio of depth to wavelength. The dislocation of the incident wave front, analogous to the
Aharonov-Bohm effect, is still observed. At short wavelengths the scattering is qualitatively similar to the
nondispersive case. At moderate wavelengths, however, there are two markedly different scattering regimes
according to whether the depth is smaller or larger than) times capillary length. In the latter case, dispersion
and advection may compensate leading to a spiral interference pattern. The dislocation is characterized by a
parameter that depends both on phase and group velocity. The validity range of the calculation is the same as
in the shallow water case: wavelengths small compared to vortex radius, and low Mach number. The impli-
cations of these limitations are carefully considered.@S1063-651X~99!18710-5#

PACS number~s!: 41.20.Jb, 47.35.1i, 47.10.1g
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I. INTRODUCTION

In the preceding paper@1#, hereafter referred to as I, w
studied the scattering of surface waves by a stationary v
cal vortex in the long wavelength approximation: surfa
tension was neglected and the fluid depth was supposed
small compared to wavelength. This is also called the s
low water approximation. There were two motivations f
the study of shallow water waves scattering. First, they
nondispersive waves, like acoustic waves in fluids, and
was plausible that a generalization of calculations for so
scattering by vorticity@2# was feasible. Second, it was a fir
attempt towards a quantitative confirmation of the heuris
approach of Berryet al. @3#. The aim of this paper is to go
beyond this approximation.

In actual experimental situations@4# the shallow water
limit is hard to obtain and, if a quantitative comparison w
experiment is desired, it becomes necessary to take into
count the finite depth and the surface tension. The main
ference between surface waves in shallow water and
deeper water lies in the fact that in the latter case disper
effects are important: there are two length scales, one a
ciated with depth and the other with surface tension, wh
are responsible for wave velocity depending on wavelen
In this paper we seek to describe the scattering of sur
waves by vorticity in terms of a single differential equatio
in which surface elevation is the only dependent variab
This is possible in a perturbative treatment away from
shallow water case, and we present here results that c
spond to first-order corrections.

As in I, we consider the scattering of surface waves b
stationary vortex, in the limit of a small Mach number~the
velocities of fluid particles are small by comparison with t
phase velocity of the waves!, M!1, and a large wave num
ber k, i.e., b[ka@1 wherea is a typical length associate
with the vortex flow. The productMb is assumed to be o
the order of 1. In Sec. II, we derive from the full hydrod
PRE 601063-651X/99/60~4!/4917~9!/$15.00
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namic set of equations an approximation valid to ord
O(M ) @or O(b21)#. First, equations are linearized for sma
surface perturbations around a steady vertical vortex
then higher-order terms inM and b21 are discarded. We
shall pay particular attention to the orders of magnitude
the different terms, and will justify the neglect of dissipativ
effects. The recovery of the shallow water results is sub
since it involves taking the singular limit of vanishing su
face tension. There appears a partial differential equa
@Eq. ~2.25! below# that contains a squared Laplacian, and
is reduced to our previous result, Eq.~2.7! of I, in the shal-
low water limit, i.e., when the layer’s depth is small an
surface tension is negligible.

The solution of Eq.~2.25! is given in Sec. III. The results
given by Eqs.~3.4! and~3.20! seem much more complicate
than the similar shallow water results, Eqs.~4.5!, ~4.9!, and
~4.10! of I. However, this complexity is essentially algebrai
and actually the physical results are rather similar, exc
when dispersive effects are closely balanced by advectio
yield a spiral pattern for the scattered waves. The wave fr
dislocation is characterized by a parametera that is a gener-
alization of the one in I, and tends towards it smoothly in t
shallow water limit. In the dispersive case,a depends on
both the phase and group velocity of the waves. We giv
perturbative justification of the heuristic argument of Ber
et al. @3#. The behavior of the scattered wave, however,
pends strongly on the ratio of depth to capillary length. W
also exhibit two different behaviors, depending on the re
tive values of the fluid depth and capillary length. At ea
important step in the calculations, we verify that the shall
water limit is recovered. However, the partial differenti
equations, Eqs.~2.25! and ~2.7! of I differ in the order of
differentiation, with surface tension appearing as a coe
cient of the highest derivative term in Eq.~2.25!; the limit of
null surface tension is thus singular. Graphical illustratio
of the solution are given in Sec. IV for various values of t
dislocation parametera and for fluid depth larger and
smaller than capillary length.
4917 © 1999 The American Physical Society
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II. WATER WAVES IN INTERACTION WITH A
VERTICAL VORTEX

Equations for an incompressible fluid of equilibriu
depth h, free surfaceh1h(x,y,t) with origin of vertical
coordinates (z50) at the bottom, lying in a~uniform! gravi-
tational fieldg are

] tV1V•“V52
1

r
“P2gẑ, ~2.1!

“•V50, ~2.2!

whereV is the fluid velocity,P is the pressure, andr is the
~constant! density.

We neglect viscous dissipation. This is justified if the v
cous attenuation timeTdiss of the wave is greater than a pe
riod Twave. The attenuation times for shallow water waves
@5#

Tdiss5
sinh 2kh

kS mn

2r D 1/2, ~2.3!

wherem is the dynamic viscosity of the fluid,h is the depth,
k is the wave number, andn is the wave frequency. In the
case of water, m50.01 g/cm s, g5981 cm/s2, and r
51 g/cm3. Below we justify that our approximation of th
dispersion relation is valid up tokh;0.8. Taking experimen-
tally reasonable values such ash51 mm and a wavelength
of about 1 cm, we getTdiss/Twave;9 for 1 cm, and
Tdiss/Twave;7 for 0.5 cm. It is thus reasonable to negle
viscosity. As a matter of fact, we do not expect qualitat
changes due to viscosity, apart from a decrease in the w
amplitude, which is, of course, not predicted in our calcu
tions.

Boundary conditions are that fluid elements at the f
surface of the fluid remain there, that pressure has a dis
tinuity that is exactly compensated by surface tension,
that there is no vertical velocity at the bottom:

z5h1h: Vz5] th1V'•“'h, ~2.4!

z5h1h: P52t¹'
2 h, ~2.5!

z50: Vz50, ~2.6!

wheret is the surface tension,V' is the horizontal velocity,
and¹' is the horizontal gradient. We are interested in sm
perturbations (v,p1 ,h1) around a steady, axially symmetri
vertical vortex (U,P0 ,h0). The vertical vortex is given by
the ~divergenceless! flow U5U0(r ) û in cylindrical coordi-
nates (r ,u,z), where (r̂ ,û,ẑ) are the unit vectors in the ra
dial, tangential, and vertical direction, respectively.

The zero-order situation,v50, gives

P052rgz1p0~x,y,t !,
U0

2

r
5

1

r
] rp0 . ~2.7!

Given a specific functionU0 this is integrated at once. Con
cerning boundary conditions, the third boundary condit
~2.6! is satisfied identically. The first boundary conditio
-

t

ve
-

e
n-
d

ll

n

~2.4! says that the surface deformation is independent of
lar angleu, and the second boundary condition~2.5! gives
the free surfaceh0 in terms of the pressure:

p05rgh02t“'
2 h0 . ~2.8!

Writing v5(u,w) and neglecting terms quadratic inv we
have the equations to the order of 1:

~] t1U•“'!u1u•“'U52
1

r
¹'p1 , ~2.9!

~] t1U•“'!w52
1

r
]zp1 ~2.10!

“'•u1]zw50. ~2.11!

Similarly, the boundary conditions to the order of 1 are@6#

z5h1h: w5~] t1U•¹'!h11u•¹'h0 , ~2.12!

z5h1h: p15rgh12t¹'
2 h1 , ~2.13!

z50: ]zp150, ~2.14!

where we used Eq.~2.10! to obtain the third boundary con
dition. Taking the divergence of Eqs.~2.9! and ~2.10!, and
using Eq.~2.11! gives

“'
2 p11]zzp1522r~“aUb!~“bua!. ~2.15!

Up to now, these equations are exact forlinear surface
waves interacting with a static vortex. It is the fact that line
waves exist that provides us with another parameter,
phase velocity, with which to compareU. We will now sim-
plify the problem by using the following two approxima
tions: First, the typical velocity of the vortical flowU0 is
supposed to be much less than thephasevelocity of the wave
cf . Second, the wavelengthl is supposed to be muc
smaller than a typical length associated with the vortexa. In
practice,a will be the core radius of the vortex, and w
assumeka@1 wherek[2p/l is the wave vector. We will
denote formally the small quantities bye. We thus assume
U0 /cf[M5O(e), whereM will be called the Mach num-
ber in analogy with acoustics, andka5O(1/e), and we
search for corrections of ordere to the wave equation with-
out permanent vortical flow. To get the relative importan
of the terms that appear in the differential equations, we w
use the following estimates:

“' f 0;
f 0

a
, ] t f 1;n f 1 , ¹' f 1;k f1 , ]zf 1;k f1 ,

~2.16!

wheref 0 is any scalar quantity referring to the vortical flow
f 1 is any scalar quantity referring to the surface waves, ann
is the wave frequency. We have assumed that the len
scales for vertical and horizontal variations of surface wa
are the same, as in the absence of the vortex. This ma
derived by injecting the other scalings in Eqs.~2.9!, ~2.11!,
and ~2.10!.

With those estimates, we get from Eq.~2.10! that
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k

r
p1;nw⇒p1;rcfw. ~2.17!

Injecting this result in Eq.~2.15!, the order of magnitude
of the left-hand side isk2p15k2rcfw, whereas the
right-hand side is of the order of r(U0 /a)kw
5k2rcfw(U0 /cf)(1/ka); it is thus negligible, being of or-
der O(e2), and Eq.~2.15! is replaced by

“'
2 p11]zzp150, ~2.18!

which is the same Laplace equation as in the problem
water waves without the vortex; it has the big advantage
being autonomous and linear in the pressure so that sep
tion of variables can be attempted.

An estimate of the surface elevationh0 for the vortex
flow may be obtained from Eqs.~2.8! and ~2.7!; it reads

h0;
U0

2

g S 11
l c
2

a2D 21

, ~2.19!

where we have introduced thecapillary length lc[At/rg.
For water,t574 dyn/cm, so thatl c'0.32 cm and the effec
of surface tension on the surface deformation of a vortex
sizea'1 cm is quite small, of the order of 1%. The surfa
wave elevation from Eqs.~2.13! and ~2.17! reads

h1;
cfw

g
~11k2l c

2!21, ~2.20!

with k2l c
2 of the order of 1. In the following, we takeh1

;cfw/g, which is numerically inexact but adequate for t
order of magnitude considerations. In Eq.~2.12!, the respec-
tive orders of magnitude of the different terms areU
•“'h1;M (] th1) andu•“'h0;(M2/b)(] th1), so that the
relevant approximation for Eq.~2.12!, valid to O(e), reads

z5h: w5~] t1U•¹'!h1 . ~2.21!

In this equation, we neglecth in comparison withh. If we
write p1(h1h0)5p1(h)1dp1 and use Eq.~2.19!, we get
dp1 /p1;kh0;M2, so thatdp1 is indeed negligible and the
boundary condition is to be taken atz5h. The same is true
for Eq. ~2.13!.

Let us use now these approximate equations to desc
the propagation of surface waves in the vortical flow. W
will consider almost shallow water waves, that is, the n
order in the small parameterkh of the calculations of I. In
this limit, the pressure is found as a power series in
vertical coordinatez, which, inserting boundary conditio
~2.14!, reads

p1~r ,u,z,t !5 (
m50

`

~21!mz2m
¹'

2mP

~2m!!
. ~2.22!

We introduce the notationDt[] t1U•“' . Taking only the
leading-order terms in the small parameterkh in Eq. ~2.22!,
applying the differential operatorDt to Eq.~2.21!, and taking
Eq. ~2.10! for z5h, we get
f
f
ra-

f

be

t

e

Dt
2h15

h

r
“'

2 P2
h3

6r
“'

4 P. ~2.23!

Applying “'
2 to Eq. ~2.13! for z5h and using Eq.~2.22! at

the same order, we get

gh“'
2 h12

th

r
“'

4 h15
h

r
“'

2 P2
h3

2r
“'

4 P. ~2.24!

The surface tension term is considered under the assump
that the capillary length is of the same order of magnitude
the depth of the fluid layer. In this case, those two equati
are valid up to orderO@(kh)2#. It is thus legitimate to re-
place the pressure by its value at orderO(1), P5rgh1 , in
the term}¹'

4 P, which has the highest derivative. Elimina
ing the pressure in the resulting equations, we get the fi
result: a dispersive wave equation for surface elevationh1
that is analogous to Eq.~2.7! of I in the shallow water case
It reads

gh“'
2 h11S 1

3
gh32

th

r D“'
4 h12Dt

2h150. ~2.25!

This equation includes the leading-order correction to
shallow water case. It is valid under the same assumpt
~see I! concerning wavelength and fluid velocity. It describ
the scattering of surface waves over water whose dept
small but not negligible with respect to wavelength, wh
the wavelength is small compared to the vortex size, wh
the velocity of the vortex flow is much less than the pha
velocity of the waves, and when the waves are of small a
plitude.

Without the vortex, whenU50 and] t5Dt , plane pro-
gressive waves of the form

h1}ei (nt2k'•r')

exist provided frequencyn and wave vectork[uk'u are re-
lated through the dispersion relation

n25ghk21S th

r
2

1

3
gh3D k4, ~2.26!

which is the approximation to orderO@(kh)3# of the well-
known dispersion relation for capillary-gravity waves@5#.

The wave dispersion is thus characterized by a dimens
less parameterd defined by

k2S t

rg
2

h2

3 D5
1

d
. ~2.27!

It is positive forh,) l c , and negative otherwise. We sha
consider both cases. In order to be consistent with our
proximations, namely, that the fourth-order term in E
~2.25! be a small correction to the other two, the absolu
value ofd must be large, and the shallow water limit corr
sponds toudu→`. For positived, the phase and group ve
locity read

cf
2 5gh

11d

d
, cg5

gh

cf

21d

d
~d.0!, ~2.28!
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whereas for negative values ofd they read

cf
2 5gh

udu21

udu
, cg5

gh

cf

udu22

udu ~d,0!. ~2.29!

The full dispersion relation for water waves@5# is either
convex or concave at small depth, depending on the sig
d. The crossover pointh5) l c , derived from the approxi-
mate relation~2.26!, separates two regions of opposite co
vexity. Both may be experimentally accessible. The appro
mation of the hyperbolic tangent is better than 1% forkh
,0.5, and better than 5% forkh,0.8. It is thus easy to sta
in the small depth limit, tanh(kh)'kh2(kh)3/3, while keep-
ing the wavelength small in comparison with the vortex
dius. Using a fluid with high surface tension like water lea
to a positived, that is,h,) l c , whereas the same exper
ment with a fluid of small surface tension will give a neg
tive d.

III. SCATTERING OF DISLOCATED WAVES BY A
VORTEX

We will now proceed exactly as in Sec. IV of I. Inside th
vortex, the equation for the radial functionsh̃1n factorizes
exactly as

F d2

dr2 1
1

r

d

dr
2

n2

r 2 1~k1!2GF d2

dr2 1
1

r

d

dr
2

n2

r 2 1~k2!2G h̃1n

50, ~3.1!

with

~k6!2[
1

2
k2dS 216A11

4~n2nv/2!2

ghk2d D ~d.0!

~3.2!

or

~k6!2[
1

2
k2uduS 16A12

4~n2nv/2!2

ghk2udu D ~d,0!.

~3.3!

The two differential operators in Eq.~3.1! commute, and
the four independent solutions of this fourth-order equat
are thus given by the two pairs of solutions of the two c
responding second-order differential equations.

Taking the shallow water limitd→`, we get for positive
d that k1 tends toward the value ofkn corresponding to the
shallow water case~see Eq.~4.4! of I! as it should, since this
case must be recovered as a limiting case. The other con
k2 comes from the fact that Eq.~3.1! is a fourth-order dif-
ferential equation, unlike Eq.~4.4! of I. Its limit for d→` is
singular, reflecting the fact that surface tensiont multiplies
the highest derivative term in differential equation~2.25!.
The respective role ofk1 andk2 are exchanged for negativ
d.

From Eq.~3.2! we see that whend is positivek1 is real
whereask2 is imaginary for all n, whereas for negative
d the two wave vectorsk6 are real for smalln and complex
for large n. For positived, Eq. ~3.1! has Bessel and Neu
mann functions as solutions, together with hyperbolic Bes
of

-
i-

-
s

n
-

ant

el

and hyperbolic Neumann functions. The Neumann and
perbolic Neumann functions must be discarded becaus
regularity at the origin. For negatived, we take Bessel and
Neumann functions of a complex argument, and discard
Neumann functions to ensure regularity at the origin. Thu

h15ReF(
n

S an

Jn~knr !

Jn~kna!
1bn

Xn~knr !

Xn~kna! Dei (nu2nt)G ,
~3.4!

where thean and bn are undetermined coefficients in bo
cases, and where we have introduced the notation

k1[kn , k2[ ikn , Xn[I n , ~d.0!, ~3.5!

k2[kn , k1[kn , Xn[Jn , ~d,0!. ~3.6!

Outside the vortex forr .a dropping terms of orderM2,
we get that Eq.~2.25! may be written in the factorized form

O1O2h̃1n50, O6[L2
m6

2

r 2 1q6
2 , ~3.7!

whereL[d2/dr21(1/r )(d/dr), provided the unknown co-
efficientsm1 , m2 , q1 , andq2 satisfy the following rela-
tions:

~L!:⇒q1
2 1q2

2 52dk2, ~3.8!

~1!:⇒q1
2 q2

2 52~d11!k4, ~3.9!

S 1

r 2D :⇒m1
2 q2

2 1m2
2 q1

2 52dk2n22
dk2

gh

2Gnn

2p
,

~3.10!

S L
r 2D :⇒m1

2 1m2
2 52n2, ~3.11!

S 1

r 3

d

dr D :⇒m2
2 5n2, ~3.12!

S 1

r 4D :⇒m1
2 m2

2 24m2
2 5n424n2. ~3.13!

Here we have indicated on the left the portion of the line
differential operator that leads to each condition. There
six equations for only four unknowns and obviously th
cannot be simultaneously satisfied in general. The last
equations, Eqs.~3.12! and ~3.13!, correspond to terms tha
are negligible at large distance from the vortex. If we co
pare them toL 2, they are smaller than 1/b2 becauser .a.
Accordingly, we are justified in ignoring these two equatio
in our approximationb@1 and we solve Eqs.~3.8!–~3.11!,
that gives

q1
2 5k2.0, q2

2 [~ iq !252k2~11d!,0,

~m6!25n262na ~d.0!, ~3.14!

q1
2 [q25~ udu21!k2.0, q2

2 5k2.0,

~m6!25n272na ~d,0!, ~3.15!
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a[
Gn

2p

1

gh12~t/r2gh2/3!hk2 5
Gn

2p

1

cfcg
, ~3.16!

where we used Eq.~2.26! to write the last equality. It is
important to note that the indexn212na is always associ-
ated to the incident wave vectork. We will comment further
on this result after Eq.~3.19!. From now on, we define

m1[An212na, m2[An222na, ~3.17!

so that in the negatived casem2 ~respectivelym1) is asso-
ciated withq1 ~respectivelyq2), as shown by Eq.~3.15!.

The dimensionless parametera is defined in close anal
ogy with I. We can writea5Mb(cf /cg), which may be of
the order of 1, whichM!1 andb@1. This parameter ha
the same physical interpretation as in the shallow water c
~see below!: it gives the amount of dislocation for the wav
fronts far from the vortex. This calculation provides an e
plicit confirmation, in a perturbation expansion near the sh
low water case, of the intuitive result of Berryet al. @3#.

The two differential operatorsO6 in Eq. ~3.7! do not
commute. Using the usual notation@•,•# for the commutator
of two operators, we get

@O1 ,O2#5~m1
2 2m2

2 !FL,
1

r 2G54~m1
2 2m2

2 !S 1

r 4 2
1

r 3

d

dr D ,

~3.18!

which is small, of the same order as the neglected terms,
~3.12! and ~3.13!, and will also be neglected. Thus, in th
same approximation, for positived the solution of Eq.~3.7!
is a linear combination of Bessel, Neumann, hyperbo
Bessel, and hyperbolic Neumann functions, becauseq1 is
real andq2 is imaginary. Since the hyperbolic Bessel fun
tion diverges at infinity, it must be discarded. For negatived,
the solution is a linear combination of Bessel and Neum
functions of argumentkr andqr. Since the wave numberq
is that of a scattered wave, we discard the Bessel functio
qr, keeping only the outgoing wave from the vortex.

Following Berry et al. @3# as in I, we write the surface
elevation outside the vortex in the form

h15Re~hAB1hR!, ~3.19!

where hAB is defined exactly as in the previous case I.
does not depend on the sign ofd, which is physically obvi-
ous because the amount of dislocated wave front is linke
the circulation of the vortex, not to the curvature of the d
persion relation. Thusm15An212na is always the index
of the functions involving the wave vectork. The other term
of Eq. ~3.19! depends on the sign ofd, which is also physi-
cally clear since they represent the wave scattered by
vortex. They read

hR5(
n

S dn

Hm1

1 ~kr !

Hm1

1 ~ka!
1en

Ym2
~qr !

Ym2
~qa!D ei (nu2nt).

~3.20!

Depending on the sign ofd, we have the following defini-
tions:
se

-
l-

s.

c

n

of

t

to
-

he

Ym2
[Km2

, q5kA11d ~d.0!, ~3.21!

Ym2
[Hm2

1 , q5kAudu21 ~d,0!. ~3.22!

The coefficientsan , bn , cn , dn , and en are defined so
that they denote the amplitude of the wave components a
vortex boundaryr 5a. In order to obtain these coefficient
and since Eq.~2.25! is of the order of 4, the continuity ofh̃1
and its first three derivatives atr 5a is required, which gives
four relations. The fifth and last boundary condition com
from the asymptotic behavior ofh at infinity. We require that
the asymptotics ofhAB coincides with the dislocated wav
incident from the right plus outgoing waves only. Exactly
the same way as in I, this leads to

cn

Jm1
~b!

5~2 i !m1. ~3.23!

It is important, in order to use this result, that either t
coefficientq1

2 for positived or q2
2 for negatived in Eq. ~3.7!

be equal tok2, and that they be associated in each case
m1 . Otherwise, it would have been impossible to recov
the dislocated wave, which is a crucial physical requirem
for the solution because we needq5k to be a possible resul
of the factorization. This fact fully justifies the factorizatio
in Eq. ~3.7!. We do not display the systems of equation
neither their solutions, which are not too illuminating. W
use the capability ofMATHEMATICA @7# for symbolic and
numerical calculations to get the coefficients. We insist
the fact that the solution may be inaccurate at a few wa
lengths away from the vortex because of the approxim
character of factorization~3.7!.

Let us discuss the asymptotic behavior of the solution
r→`. The case ofhAB is completely similar to the shallow
water case. Indeed, the index of the Bessel functi
m1(n)5An21(Const.)3n, has exactly the same structu
asm(n) in I. An important consequence is that the parame
a5bM (cf /cg) has the same physical significance as in
shallow water~or acoustics! case: it quantifies the dislocatio
of the wave fronts in the forward direction at large distanc
from the vortex. Other results may also be transposed
straightforward fashion, and the asymptotics ofhAB(r ,u) for
larger is still given by Eq.~4.19! of I, with the proviso that
the functionG(u,2p/2) takes into account new definitio
~3.16! of a.

The asymptotics ofhR depends on the sign ofd. If d is
positive, the hyperbolic Bessel function does not contrib
to the scattered far field because@8# Kp(z);e2z/Az for large
z. We thus get the same behavior as in I. In the next sect
we will compare the correction to the Aharonov-Bohm sc
tering amplitude in the case of shallow water waves, giv
by Eq. ~4.22! of I, and the correction for dispersive wate
waves, which reads

GDW~u,2p/2!12(
n

dn

Hm1

1 ~b!
einu~2 i !m1, ~3.24!

whereGDW is just the functionG of paper I witha redefined
by Eq. ~3.16!.
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If d is negative, we must take into account the two o
going Hankel functions, so that the correction for dispers
water waves now reads

GDW~u,2p/2!12(
n Fdn~2 i !m1

Hm1

1 ~b!

1
en~2 i !m2

~ udu21!1/4Hm2

1 ~bAudu21!Geinu. ~3.25!

IV. NUMERICAL EXAMPLES

The solution to the scattering problem of surface wa
by a uniform vertical vortex depends on four dimensionle
parameters. A first set includes the dimensionless vortex
dius b@1 and the dislocation parametera5bM (cf /cg),
which quantifies the wave front dislocation. They alrea
appeared in I, with the same definitions and physical in
pretations. A third parameter is the dimensionless capill
length l [klc , and the last one is the dimensionless de
kh. In order to simplify somewhat the discussion, we use
single dimensionless parameterd, defined in Eq.~2.27!, in
place of the depth and capillary length. As an example,
take d58 that may correspond, for example, toh5 l c , kh
5)/4, andd528, which may correspond toh53l c and
kh53/4. In both cases, the hyperbolic tangent in the wa
waves dispersion relation@5# is approximated to better tha
five percent by the two leading terms, the ones we are ke
ing in its series expansion.

Scaling radial distance with the vortex radius,r 8[r /a,
the analytical expression of the surface displacement is s
marized as follows, depending on the sign ofd. Inside the
vortex (0,r 8<1) we haveh15Rehc .

For positivevalues ofd,

hc5(
n

S an

Jn~f̃nr 8!

Jn~f̃n!
1bn

I n~wnr 8!

I n~wn!
D ei (nu2nt), ~4.1!

where we have defined the following dimensionless wa
numbers:

kna[f̃n5bAd

2 F211A114
11d

d2 S 12n
a

b2

21d

11d D 2G1/2

,

~4.2!

kna[wn5bAd

2 F11A114
11d

d2 S 12n
a

b2

21d

11d D 2G1/2

.

~4.3!

For negativevalues ofd,

hc5(
n

S an

Jn~fnr 8!

Jn~fn!
1bn

Jn~ w̃nr 8!

Jn~ w̃n! Dei (nu2nt), ~4.4!

with new dimensionless wave numbers:
-
e

s
s
a-

y
r-
y
h
e

e

r

p-

-

e

kna[fn5Audu
2

bF1

2A124
udu21

d2 S 12n
a

b2

udu22

udu21D 2G1/2

, ~4.5!

kna[w̃n5Audu
2

bF1

1A114
udu21

d2 S 12n
a

b2

udu22

udu21D 2G1/2

.

~4.6!

Outside the vortex (r 8.1) h15Re(hAB1hR), where,
whatever the sign ofd,

hAB5(
n

~2 i !m1Jm1
~br 8!ei (nu2nt). ~4.7!

For positivevalues ofd,

hR5(
n

S dn

Hm1

1 ~br 8!

Hm1

1 ~b!
1en

Km2
~bA11dr 8!

Km2
~bA11d!

D ei (nu2nt),

~4.8!

where we have used the fact that

qa5bA11d. ~4.9!

For negativevalues ofd,

hR5(
n

S dn

Hm1

1 ~br 8!

Hm1

1 ~b!
1en

Hm2

1 ~bAudu21r 8!

Hm2

1 ~bAudu21!
D ei (nu2nt),

~4.10!

where we have used the fact that

qa5bAudu21. ~4.11!

We do not give the details of the calculations of the c
efficientsan , bn , dn , anden . Although their definitions are
far more complicated, their behavior is very similar to t
previous case~see I!. As an illustration, absolute values o
those coefficients are plotted in Fig. 1 as a function of th
index, and their rapid decrease suffices to indicate~simple!
convergence of the corresponding series.

Since convergence of the series expansions forhAB and
hR is not uniform, the number of terms to keep in the n
merical evaluation of the infinite series depends on the va
of r 8. In practice, the convergence of the series is com
rable to the case of I, and we use roughly the same numbe
terms. We compute the patterns of the surface displacem
in the regionux8u,uy8u<5@(x8,y8)5(r 8 cosu,r8 sinu)# by the
finite sum of Eqs.~4.1!, ~4.4!, ~4.8!, and ~4.10! with unu
<50 for b510 and unu<30 for b55, but we keep more
terms,unu<90 in Eq.~4.7!. All calculations were performed
usingMATHEMATICA @7#.

Let us first consider the case of positived. Figs. 2~a!, and
2~c! show the resulting displacements ford518, b55, and
a51,2, and Figs. 3~a!, and 3~c!, for the same values ofa and
d, but b510. The dislocation of the incident wave fronts b
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an amount equal toa is clearly visible. The outward travel
ing scattered wave is also visible. The interference patte
between scattered and incident wave is very similar to
corresponding pictures of I, for the same values ofb anda.
This is confirmed by the comparison of the scattering cr
section displayed in Figs. 4~a!, and 4~c!, as discussed below
Taking into account the dispersion greatly modifies the
merical value ofa, but other corrections are small in the ca
of positived.

In the case of negatived, the interference pattern i
strongly modified. This is illustrated in Figs. 2~b! and 2~d!,

FIG. 1. Absolute magnitude of the neperian logarithm of co
ficients an ~a!, bn ~b!, dn ~c!, anden ~d!, versusn in a log-linear
plot. The parameters used in the calculations area51 and b
510. On the same graph, we display both cases of positived5
18 ~dots! and negatived528 ~empty circles!. Note the asymme-
try with respect ton→2n, and the very quick decrease of th
coefficients.

FIG. 2. Density plot of the surface elevation for the total wa
patterns forb55, and several values ofa and d. Respectively,a
51, d518: ~a!, a51, d528: ~b!, a52, d518: ~c!, and a
52, d528: ~d!. The gray scale is linear with surface amplitud
~arbitrary units!. The dark ring indicates the vortex location, and t
vortex rotates counterclockwise. The wave is incident from
right. The box size is 10310 in units ofa, the vortex radius.
ns
e

s

-

where we plot the surface displacement ford528, b55,
and a51,2. The spiral wave, which is clearly seen fora
52 @Fig. 2~d!#, is very different from the corresponding fig
ure of I @see Fig. 2~d! of I#. For larger values ofb shown in
Figs. 3~b! and 3~d! for which b510 with the same values fo
d anda as before, the pictures are much more similar to
shallow water case.

Those results obtained at a finite distance from the vor
are fully confirmed asyptotically far from it by the plots o
the absolute value of the correction to the Aharonov-Bo
scattering amplitude in both cases. The dashed line in Fi
shows this correction in the shallow water~nondispersive!
case, and the solid line shows the same correction in
dispersive case, for a positived518 in Figs. 4~a! and 4~c!
and a negatived528 in Figs. 4~b! and 4~d!. In the positive
d case, both corrections are almost the same, in agreem
with the results at finite distance shown in Figs. 2 and 3.
the negatived case, apart for the smallest values ofa @see
Fig. 4~b!#, the corrections are markedly different. In th
negatived dispersive case, the scattering is much more i
tropic, and very different in amplitude. An obvious, b
somewhat formal explanation of this difference is the supp
mentary functionHm2

1 (bAudu21) in Eq.~3.25! compared to

Eq. ~3.24!. Also, the index of this function ism2(n) that
takes imaginary values for smallpositive n, rather than for
small negative nas m1(n). This implies that the partia
amplitudes for exp(2inu) and exp(inu) are much more simi-
lar to each other than in the shallow water case, for wh
m2 is absent, and also more similar than in the case of p
tive d, where the decrease of the corresponding function
exponential. The appearance of an algebraically (}1/Ar ) de-
creasing amplitude associated tom2 in the negatived case
restores the symmetry of the scattered wave.

A more physical explanation is as follows: Consider
plane wave incident from the right on a counterclockw
vortex, as in Figs. 2 and 3. Above the vortex, the wave fr
velocity is increased by advection, whereas it is decrea

-

e

FIG. 3. Same as Fig. 2, forb510.
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FIG. 4. Polar plot of the abso
lute value of the correction to the
Aharonov-Bohm~i.e., point! scat-
tering amplitude, in the case o
nondispersive waves~dashed line!
and in the case of dispersiv
waves~solid line!, for b55 and,
respectively: a50.25, d518:
~a!, a50.25, d528: ~b!, a
50.5, d518: ~c!, and a50.5,
d528: ~d!. In this last case the
dispersive wave scatters very di
ferently from the nondispersive
wave. The vortex location is
marked by the large dot; the vor
tex rotates counterclockwise.
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below the vortex. Consequently, the wave fronts should b
towards the bottom of the picture, as they do. The ot
effect of the vortical flow is to add a wavelength below t
vortex, which means that the wave numberk decreases be
low the vortex. Sincekh is assumed to be small, for positiv
d the phase velocity increases withk. The phase velocity is
thus smaller below the vortex than above, which enhan
the bending of the wave fronts, and reinforces the stro
asymmetry in the interference pattern of Figs. 2~a! and 2~c!
and Figs. 3~a! and 3~c!, and in the scattering amplitude o
Figs. 4~a! and 4~c!. For negatived, the phase velocityde-
creaseswith k, and the effect of the dislocation is to mak
the phase velocity smaller for the part of the wave fro
above the vortex. This effect balances the effect of adv
tion, and we understand why the interference pattern@see
Figs. 2~b! and 2~d! and Figs. 3~b! and 3~d!# and the scattering
amplitude@see Fig. 4~d!# are much more symmetric than i
the positived case, or than in the nondispersive (d50) case.
It is also reasonable that this effect should be more impor
for b55 than forb510, because the relative variation ink
due to the dislocation is greater in the former case. The sp
waves are observed for negatived because the interferenc
pattern almost keeps rotational symmetry while smooth
the wave front dislocation in the forward direction.

As a last illustration, we compare the wave patterns p
dicted by the shallow water approximation and by its fi
correction in powers of the fluid depth in an experimenta
accessible situation. We suppose the fluid to be pure wa
of depth 1 mm; the vortex radius is 1 cm and the wavelen
is 2 cm. Thuskh5p/10, and the approximation of the dis
d
r

es
g

t
c-

nt

al

g

-
t

r,
h

persion relation is excellent. The price to pay is the rat
small valueb5p. We take the vortex circulation such tha
a51 in the shallow water approximation, for whichc
[Agh59.9 cm/s. Taking the dispersion into account, we g
d51.4, cf513.0 cm/s, cg518.4 cm/s, anda50.41. The
difference in the respective numerical values ofa is the lead-
ing effect. The result is shown in Fig. 5. To obtain quanti
tive agreement with an experimental situation, it may be s
ficient to keep the shallow water approximation, but with t
actual value ofa obtained in the dispersive case@Eq. ~3.16!.
It should be interesting to use a fluid with a very sm

FIG. 5. Density plot of the surface elevation for the total wa
pattern calculated in the shallow water approximation~a! and to
first order in fluids depth~b!. The gray scale is linear with surfac
amplitude~arbitrary units!. The dark ring indicates the vortex loca
tion, and the vortex rotates counterclockwise. The incident w
comes from the right. The box size is 20320 in units of a, the
vortex radius.b5p in both cases, buta51 in the shallow water
case~a!, anda50.41, d51.4 in the dispersive case~b!.
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surface tension in order to obtain a negative value ofd while
keeping a small value ofkh for which the wave pattern
should be extremely different from the shallow fluid lay
approximation.

V. CONCLUDING REMARKS

We have computed the surface displacement due to a
persive surface wave interacting with a vertical vortex wh
the vortex core performs solid body rotation; the wavelen
is small compared to the vortex core radius and the part
velocities associated with the wave are small compared
the particle velocities associated with the vortex. When
parametera5nG/2pcfcg is of the order of 1 or bigger, the
wave fronts become dislocated. This parameter depend
the dispersive case, both on the phase and group veloci
the wave, and tends smoothly toward the result of I in
nondispersive limit. We thus give a proof in a perturbati
fashion of the heuristic derivation of Berryet al. @3#.

Formally, we proceed perturbatively around the shall
water limit to obtain a fourth-order partial differential equ
tion for the surface elevation associated with the surf
wave. However, apart from some technical details, the s
tion is very similar to the nondispersive case. The scatte
waves interact strongly with the dislocated wave fronts a
produce interference patterns. A dimensionless parametd
quantifies the relation between fluid layer depthh and capil-
J.

tt
is-
n
h
le
to
e

in
of
e

e
u-
d
d
r

lary length l c . When it is positive (h,) l c) the wave pat-
tern is similar to the shallow water case. When it is negati
for large values of the circulation, the wave pattern is ve
different.

We hope that the calculations in the dispersive case
help the comparison with experiments. Our calculations
valid when the approximation tanhkh.kh2(kh)3/3 holds.
This is a restrictive condition, but we believe that once d
persion is correctly taken into account in the definition ofa,
the wave pattern given by the nondispersive case should
roughly similar to the observations. Some discrepancies
expected when the fluid depth is greater than the capil
length (h.) l c), but in this case it is necessary to correc
approximate the hyperbolic tangent by the first two terms
the series, and in practice the effect should be observable
a fluid of small surface tension~thus small capillary length!
only. However, it is quite possible that effects such as
spiral patterns will persist qualitatively in the case of de
water, when our perturbative approach will no longer hol
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