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Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect.
Il. Dispersive waves
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Previous results on the scattering of surface waves by vertical vorticity on shallow water are generalized to
the case of dispersive water waves. Dispersion effects are treated perturbatively around the shallow water limit,
to first order in the ratio of depth to wavelength. The dislocation of the incident wave front, analogous to the
Aharonov-Bohm effect, is still observed. At short wavelengths the scattering is qualitatively similar to the
nondispersive case. At moderate wavelengths, however, there are two markedly different scattering regimes
according to whether the depth is smaller or larger fatimes capillary length. In the latter case, dispersion
and advection may compensate leading to a spiral interference pattern. The dislocation is characterized by a
parameter that depends both on phase and group velocity. The validity range of the calculation is the same as
in the shallow water case: wavelengths small compared to vortex radius, and low Mach number. The impli-
cations of these limitations are carefully considef&1063-651X99)18710-3

PACS numbes): 41.20.Jb, 47.35:i, 47.10+¢

[. INTRODUCTION namic set of equations an approximation valid to order
O(M) [or O(B~Y)]. First, equations are linearized for small
In the preceding papdn], hereafter referred to as I, we surface perturbations around a steady vertical vortex and
studied the scattering of surface waves by a stationary vertthen higher-order terms iM and g~ are discarded. We
cal vortex in the long wavelength approximation: surfaceshall pay particular attention to the orders of magnitude of
tension was neglected and the fluid depth was supposed to e different terms, and will justify the neglect of dissipative
small compared to wavelength. This is also called the shafeffects. The recovery of the shallow water results is subtle
low water approximation. There were two motivations for Since it involves taking the singular limit of vanishing sur-
the study of shallow water waves scattering. First, they ard@Ce tension. There appears a partial differential equation
nondispersive waves, like acoustic waves in fluids, and i{Eq' (2.29 below] that contains a squared La_plaman, and it
was plausible that a generalization of calculations for soun reduced to our previous result, E@,j) of |, n the shal-
scattering by vorticity 2] was feasible. Second, it was a first ow water '”.“'t- €. w.ht.an the layer's depth is small and
o i : ... surface tension is negligible.
attempt towards a quantitative confirmation of the heuristic . S .

. . : The solution of Eq(2.25 is given in Sec. Ill. The results
approach .Of Berryet_ al. [.3]' The aim of this paper is to go given by Egs(3.4) and(3.20 seem much more complicated
beyond this appro>_<|mat|on. L than the similar shallow water results, E¢4.5), (4.9), and
_ In actual experimental situatior{#t] the shallow water (4 10 of | However, this complexity is essentially algebraic,
limit is hard to obtain and, if a quantitative comparison with 5q actually the physical results are rather similar, except
experiment is desired, it becomes necessary to take into agzhen dispersive effects are closely balanced by advection to
count the finite depth and the surface tension. The main difgje|d a spiral pattern for the scattered waves. The wave front
ference between surface waves in shallow water and igjslocation is characterized by a parametethat is a gener-
deeper water lies in the fact that in the latter case dispersioglization of the one in |, and tends towards it smoothly in the
effects are important: there are two length scales, one assghallow water limit. In the dispersive case,depends on
ciated with depth and the other with surface tension, whictboth the phase and group velocity of the waves. We give a
are responsible for wave velocity depending on wavelengthperturbative justification of the heuristic argument of Berry
In this paper we seek to describe the scattering of surfacet al. [3]. The behavior of the scattered wave, however, de-
waves by vorticity in terms of a single differential equation pends strongly on the ratio of depth to capillary length. We
in which surface elevation is the only dependent variablealso exhibit two different behaviors, depending on the rela-
This is possible in a perturbative treatment away from theive values of the fluid depth and capillary length. At each
shallow water case, and we present here results that corrgnportant step in the calculations, we verify that the shallow
spond to first-order corrections. water limit is recovered. However, the partial differential

As in |, we consider the scattering of surface waves by aquations, Eqs(2.25 and (2.7) of | differ in the order of
stationary vortex, in the limit of a small Mach numbghe  differentiation, with surface tension appearing as a coeffi-
velocities of fluid particles are small by comparison with thecient of the highest derivative term in E@.25; the limit of
phase velocity of the wavgsM <1, and a large wave num- null surface tension is thus singular. Graphical illustrations
berk, i.e., B=ka>1 wherea is a typical length associated of the solution are given in Sec. IV for various values of the
with the vortex flow. The produdv 8 is assumed to be of dislocation parameterr and for fluid depth larger and
the order of 1. In Sec. Il, we derive from the full hydrody- smaller than capillary length.
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Il. WATER WAVES IN INTERACTION WITH A (2.4) says that the surface deformation is independent of po-
VERTICAL VORTEX lar angle 6, and the second boundary conditich5) gives

Equations for an incompressible fluid of equilibrium the free surfacey, in terms of the pressure:

depth h, free surfaceh+ n(x,y,t) with origin of vertical

coordinates £=0) at the bottom, lying in &niform) gravi-

tational fieldg are Writing v = (u,w) and neglecting terms quadraticunwe
have the equations to the order of 1:

Po=pg 70— 7V 7. (2.9

1
V+V-VV=—--VP—-gz (2.1 1
P (9,+U-V,)u+u.-V,U=—-V, p,, (2.9
v.V=0, 2.2 P
whereV is the fluid velocity,P is the pressure, andis the (3,+U-V, )w=— E(;Zpl (2.10
(constant density. P
We neglect viscous dissipation. This is justified if the vis-
cous attenuation time s of the wave is greater than a pe- V. utdw=0. (21Y
Eg}d Twave- The attenuation times for shallow water waves 'sSimiIarIy, the boundary conditions to the order of 1 §6&
sinh &h z=h+tn: w=(3+U-V )n+u-V,im, (212
diss— p\ 172 (2.3 )
k(g_) z=h+n: p1=pgn—7Viny, (213
P
z=0: 9,p,=0, (2.149

wherew is the dynamic viscosity of the fluidh is the depth,

k is the wave number, and is the wave frequency. In the \yhere we used Eq2.10 to obtain the third boundary con-

case of water, u=0.01g/cms, g=981cm/é, and p  dition. Taking the divergence of Eq&.9) and(2.10, and
=1 g/cnt. Below we justify that our approximation of the using Eq.(2.11) gives

dispersion relation is valid up toh~ 0.8. Taking experimen-

tally reasonable values such s=1 mm and a wavelength V2p1+d,01=—2p(VaUp)(Vyouy). (2.19

of about 1 cm, we getT s/ Tyae=9 for 1 cm, and

Taiss/ Twave~ 7 for 0.5 cm. It is thus reasonable to neglect Up to now, these equations are exact lioear surface

viscosity. As a matter of fact, we do not expect qualitativewaves interacting with a static vortex. It is the fact that linear

changes due to viscosity, apart from a decrease in the wawgaves exist that provides us with another parameter, the

amplitude, which is, of course, not predicted in our calcula{phase velocity, with which to compaté. We will now sim-

tions. plify the problem by using the following two approxima-
Boundary conditions are that fluid elements at the fredions: First, the typical velocity of the vortical flow, is

surface of the fluid remain there, that pressure has a discoisupposed to be much less than giasevelocity of the wave

tinuity that is exactly compensated by surface tension, and,. Second, the wavelength is supposed to be much

that there is no vertical velocity at the bottom: smaller than a typical length associated with the voeein
practice,a will be the core radius of the vortex, and we
z=h+n. V=tV -V 7, (24 assumekas>1 wherek=27/\ is the wave vector. We will
) denote formally the small quantities ky We thus assume
z=h+2n: P=-=7Viy, (2.9 Uo/c,=M=0(e), whereM will be called the Mach num-

ber in analogy with acoustics, arka=0(1/e), and we
search for corrections of orderto the wave equation with-
out permanent vortical flow. To get the relative importance
Iof the terms that appear in the differential equations, we will
use the following estimates:

z=0: V,=0, (2.6

where is the surface tensiory, is the horizontal velocity,
andV, is the horizontal gradient. We are interested in smal
perturbations ¥, p,7¢) around a steady, axially symmetric,
vertical vortex U,Pg, 7). The vertical vortex is given by

. fo
the (divergencelessflow U=U(r)# in cylindrical coordi- Viforo afamvfy, Vifa~kfy, o dpfi~kfy,
nates (,6,z), where §,8,2) are the unit vectors in the ra- (2.16
dial, tangential, and vertical direction, respectively.
The zero-order situatiorny =0, gives wheref is any scalar quantity referring to the vortical flow,

f, is any scalar quantity referring to the surface waves,and

0 is the wave frequency. We have assumed that the length
Po=—pgz+po(x.y,t), == 5 rPo- (2.7 scales for vertical and horizontal variations of surface waves
are the same, as in the absence of the vortex. This may be
Given a specific functiotJ this is integrated at once. Con- derived by injecting the other scalings in E¢8.9), (2.11),
cerning boundary conditions, the third boundary conditionand (2.10.
(2.6) is satisfied identically. The first boundary condition  With those estimates, we get from E.10 that

2
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k
;pl"" YW= plNPC(ﬁW

(2.17

Injecting this result in Eq(2.15), the order of magnitude
of the left-hand side isk?p;=k?pc4w, whereas the
right-hand side is of the order ofp(Ug/a)kw
=k2pC¢W(U0/C¢)(1/ka); it is thus negligible, being of or-
derO(e?), and Eq.(2.15 is replaced by

V2p;+3,p1=0, (2.18

which is the same Laplace equation as in the problem
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h 3
Dfnlz’;VEH—@VfH. (2.23
Applying V2 to Eq.(2.13 for z=h and using Eq(2.22 at
the same order, we get

02— vt v Mg 024
gnvim P IR/ P 1 2p IREE :
The surface tension term is considered under the assumption

that the capillary length is of the same order of magnitude as
ofhe depth of the fluid layer. In this case, those two equations

. 2 . g
water waves without the vortex; it has the big advantage oftr® valid up to ordeO[(kh)“]. It is thus legitimate to re-
being autonomous and linear in the pressure so that separ@lace the pressure by its value at or@l), I1=pg7,, in

tion of variables can be attempted.
An estimate of the surface elevatiaf, for the vortex
flow may be obtained from Eq$2.8) and (2.7); it reads

|2 -1
c
+_ 1
az)

u3
o~

5 (2.19

where we have introduced theapillary length L=+/7/pg.

the term= V411, which has the highest derivative. Eliminat-
ing the pressure in the resulting equations, we get the final
result: a dispersive wave equation for surface elevaijgn
that is analogous to E@2.7) of | in the shallow water case.

It reads

ghv? 7+

1 h\ _, 5
§gh _7 Vin—Dim=0. (229

For water,7=74 dyn/cm, so that;~0.32cm and the effect Thjs equation includes the leading-order correction to the

of surface tension on the surface deformation of a vortex ofp 5110w water case. It is valid under the same assumptions
sizea~1 cm is quite small, of the order of 1%. The surface sge ) concerning wavelength and fluid velocity. It describes

wave elevation from Eq<€2.13 and(2.17 reads
Cy4W
=g (LK) (2.20

with k2|§ of the order of 1. In the following, we takey

~c4w/g, which is numerically inexact but adequate for the

order of magnitude considerations. In Eg.12), the respec-
tive orders of magnitude of the different terms alk
-V 71~M(dy71) andu-V, 5o~ (M? B)(dy71), so that the
relevant approximation for Eq2.12), valid to O(€), reads
z=h: w=(4+U-V,)n;. (2.21)

In this equation, we negleetin comparison witth. If we

write p1(h+ ) =p1(h)+ p; and use Eq(2.19, we get

8p1/p1~kme~M?2, so thatdp; is indeed negligible and the

boundary condition is to be taken ath. The same is true
for Eq. (2.13.

Let us use now these approximate equations to descriqg
the propagation of surface waves in the vortical flow. We
will consider almost shallow water waves, that is, the next

order in the small parametdth of the calculations of I. In

this limit, the pressure is found as a power series in the
vertical coordinatez, which, inserting boundary condition

(2.14), reads
. v
pl(r,a,z,t)zmz,o (—1)mzZm(2LT)!. (2.22

We introduce the notatioD,=4d,+U-V . Taking only the
leading-order terms in the small paramekérin Eq. (2.22),

applying the differential operatd®; to Eq.(2.21), and taking
Eq. (2.10 for z=h, we get

the scattering of surface waves over water whose depth is
small but not negligible with respect to wavelength, when
the wavelength is small compared to the vortex size, when
the velocity of the vortex flow is much less than the phase
velocity of the waves, and when the waves are of small am-
plitude.

Without the vortex, whertd=0 andd,=D,, plane pro-
gressive waves of the form

el (kL)

exist provided frequency and wave vectok= |k, | are re-
lated through the dispersion relation

2_ T_h_l 3|4
v2=ghie+ 30K,

(2.26

which is the approximation to orded[ (kh)®] of the well-
known dispersion relation for capillary-gravity wavies.

The wave dispersion is thus characterized by a dimension-
ss parametef defined by

(2.27

It is positive forh<v3l., and negative otherwise. We shall
consider both cases. In order to be consistent with our ap-
proximations, namely, that the fourth-order term in Eq.
(2.25 be a small correction to the other two, the absolute
value of § must be large, and the shallow water limit corre-
sponds to 8| —. For positives, the phase and group ve-
locity read

, 146
ci=gh—5—,

gh2+6

Cg:
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whereas for negative values éfthey read and hyperbolic Neumann functions. The Neumann and hy-
perbolic Neumann functions must be discarded because of
regularity at the origin. For negativé we take Bessel and
Neumann functions of a complex argument, and discard the
Neumann functions to ensure regularity at the origin. Thus

L ghls]-2
C¢=ghw, CQZEW (6<0). (2.29

The full dispersion relation for water wavé€s] is either
convex or concave at small depth, depending on the sign of B Jn(Kknr) Xa(Knl) | o=y
6. The crossover poini=v3l., derived from the approxi- =R zn: aan(kna) "X, (kna) € '
mate relation(2.26), separates two regions of opposite con- (3.4
vexity. Both may be experimentally accessible. The approxi-
mation of the hyperbolic tangent is better than 1% Kkér ~ where thea, and b, are undetermined coefficients in both
<0.5, and better than 5% féth<<0.8. It is thus easy to stay cases, and where we have introduced the notation
in the small depth limit, tantf)~kh—(kh)*/3, while keep-
ing the wavelength small in comparison with the vortex ra-
dius. Using a fluid with high surface tension like water leads _ _ _
to a positives, that is,h<v3l,, whereas the same experi- K-=kn, ki=wn, X=Jn, (6<0). (3.6
ment with a fluid of small surface tension will give a nega-  oyside the vortex for>a dropping terms of ordeM?,
tive 8. we get that Eq(2.25 may be written in the factorized form

k.=k,, k.=ik,, X,=l,, (5>0), (3.5

Ill. SCATTERING OF DISLOCATED WAVES BY A ~ m
VORTEX 0+0-71n=0, O.=L--7+q5, (3.7

We will now proceed exactly as in Sec. IV of |. Inside the —d2
: . o : where L=d</dr
vortex, the equation for the radial functiofig,, factorizes
exactly as

2+ (1/r)(d/dr), provided the unknown co-
efficientsm, , m_, g, , andq_ satisfy the following rela-

tions:
d2 1d n? 2 d n? . 2 2 _ o2
e a0 g e 0 e oo
22 — 4
=0, (3.1) (1):=059Z=—(5+1)k%, (3.9
: 1 5k? 2I'vn
with (F)::miq%rmzqi:—ékznz—% 5
k 2—1k26( 1+\/1+4(V_nw/2)2 5>0 (310
(k+) =3 * T ghikds ( ) ,
(3.2 (r—z)::>mi+m2_=2n2, (3.11)
or
1dy 5
e2e Eeas 1e /1 4(v—nw/2)® 520 B3gr) T me=n% 312
(kx)*= 5kl 1= gh—k2|5|(<)'
3.3 1
33 (r—4):=>mim2_—4m2_=n4—4n2. (3.13

The two differential operators in E§3.1) commute, and

the four independent solutions of this fourth-order equatioriere we have indicated on the left the portion of the linear
are thus given by the two pairs of solutions of the two cor-gjfferential operator that leads to each condition. There are
responding second-order differential equations. o six equations for only four unknowns and obviously they
Taking the shallow water limif— <, we get for positive  cannot be simultaneously satisfied in general. The last two
dthatk, tends toward the value ¢f, corresponding to the  equations, Eqs(3.12 and (3.13, correspond to terms that
shallow water casésee Eq(4.4) of |) as it should, since this are negligible at large distance from the vortex. If we com-
case must be recovered as a limiting case. The other consta&ire them tol 2, they are smaller than A% because >a.
k_ comes from the fact that Eq3.1) is a fourth-order dif-  Accordingly, we are justified in ignoring these two equations

singular, reflecting the fact that surface tensiomultiplies  {hat gives

the highest derivative term in differential equati¢éx.25.

The respective role df, andk_ are exchanged for negative g2 =k?>>0, g%=(iq)’=—k*(1+6)<0,
6.
From Eq.(3.2) we see that wheid is positivek, is real (m.)?=n?*x2na (5>0), (3.19
whereask_ is imaginary for alln, whereas for negative
S the two wave vectork.. are real for smalh and complex a>=qg?=(|6]-1)k*>0, qg2=k>>0,

for large n. For positive 5, Eq. (3.1) has Bessel and Neu-
mann functions as solutions, together with hyperbolic Bessel (m.)?=n?F2na (6<0), (3.1
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Iy 1 _TIv 1 (3.16 Y =Kmn , q=kJ1+6 (6>0), (3.22)
2w gh+2(7/p—gh?/3)hk® 2w cycy’

a=

Ym =Hm ., a=kyJ|o]-1 (8<0). (3.22

where we used Eq(2.26) to write the last equality. It is
important to note that the index*+ 2n« is always associ-
ated to the incident wave vectkr We will comment further
on this result after Eq3.19. From now on, we define

The coefficientsa,, b,, ¢,, d,, ande, are defined so
that they denote the amplitude of the wave components at the
vortex boundaryr=a. In order to obtain these coefficients,

N o -y N v - and since Eq(2.25 is of the order of 4, the continuity G,
my=yn“+2na, m.-=yn"-2na, (317 and its first three derivatives ata is required, which gives
four relations. The fifth and last boundary condition comes
from the asymptotic behavior of at infinity. We require that
the asymptotics ofyag coincides with the dislocated wave
incident from the right plus outgoing waves only. Exactly in
the same way as in |, this leads to

so that in the negativé casem_ (respectivelym,) is asso-
ciated withqg, (respectivelyg_), as shown by Eq(3.15.
The dimensionless parameteris defined in close anal-
ogy with I. We can writee=M g(c,/cg), which may be of
the order of 1, whichM<1 and 3> 1. This parameter has
the same physical interpretation as in the shallow water case

(see below it gives the amount of dislocation for the wave Cn =(—i)m~. (3.23
fronts far from the vortex. This calculation provides an ex- Im, (B)

plicit confirmation, in a perturbation expansion near the shal-

low water case, of the intuitive result of Berey al. [3]. It is important, in order to use this result, that either the

The two differential operator©. in Eq. (3.7) do not  coefficientg? for positivesor g> for negativesin Eq.(3.7)
commute. Using the usual notatipn-] for the commutator be equal tok?, and that they be associated in each case to

of two operators, we get m, . Otherwise, it would have been impossible to recover
the dislocated wave, which is a crucial physical requirement
1 1 1d for the solution because we negek k to be a possible result
_ 2 A2 - 2 _ A2 - - =
[O+.,0-]=(m% m—)[ﬁ' r2} =4(my m_)( PEA dr)’ of the factorization. This fact fully justifies the factorization

(3.18 in Eq. (3.7). We do not display the systems of equations,
neither their solutions, which are not too illuminating. We

which is small, of the same order as the neglected terms, Eqese the capability oMATHEMATICA [7] for symbolic and
(3.12 and (3.13), and will also be neglected. Thus, in the numerical calculations to get the coefficients. We insist on
same approximation, for positiv&the solution of Eq(3.7)  the fact that the solution may be inaccurate at a few wave-
is a linear combination of Bessel, Neumann, hyperbolidengths away from the vortex because of the approximate
Bessel, and hyperbolic Neumann functions, becayiseés  character of factorizatiofB.7).
real andg_ is imaginary. Since the hyperbolic Bessel func-  Let us discuss the asymptotic behavior of the solution for
tion diverges at infinity, it must be discarded. For negative r—o. The case ofy,g is completely similar to the shallow
the solution is a linear combination of Bessel and Neumanmvater case. Indeed, the index of the Bessel function,
functions of argumenkr andqr. Since the wave number  m_(n)=/n?+(Const.)xn, has exactly the same structure
is that of a scattered wave, we discard the Bessel function aism(n) in I. An important consequence is that the parameter

gr, keeping only the outgoing wave from the vortex. a=BM(c,/cg) has the same physical significance as in the
Following Berry et al. [3] as in |, we write the surface shallow water(or acousticscase: it quantifies the dislocation
elevation outside the vortex in the form of the wave fronts in the forward direction at large distances
from the vortex. Other results may also be transposed in a
71=Re& 75t 7R), (3.19 straightforward fashion, and the asymptoticsag(r, 6) for

larger is still given by Eq.(4.19 of |, with the proviso that
where 7,p is defined exactly as in the previous case I. Itthe functionG(6,— w/2) takes into account new definition
does not depend on the sign &fwhich is physically obvi- (3.16 of a.
ous because the amount of dislocated wave front is linked to  The asymptotics ofyz depends on the sign of If §is
the circulation of the vortex, not to the curvature of the dis-positive, the hyperbolic Bessel function does not contribute
persion relation. Thusn, = \n?+ 2na is always the index to the scattered far field becaUsgd Kp(z)~e‘2/\/Efor large
of the functions involving the wave vectr The other term  z. We thus get the same behavior as in 1. In the next section,
of Eq. (3.19 depends on the sign @ which is also physi- we will compare the correction to the Aharonov-Bohm scat-
cally clear since they represent the wave scattered by thering amplitude in the case of shallow water waves, given
vortex. They read by Eq. (4.22 of |, and the correction for dispersive water
waves, which reads

+ _ .
el( 0 t). d.]

= d, n
7= 2 | ORI oY, g Goud 6~ 72+ 25 —
(3.20 @ Hn, (8)

eni(—i)m+, (3.29

Depending on the sign of, we have the following defini- whereGp,y is just the functiorG of paper | witha redefined
tions: by Eq.(3.16.
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If &is negative, we must take into account the two out- B
going Hankel functions, so that the correction for dispersive kna=d,= 7,8 1
water waves now reads
\/1 4|a|—1(1 a |5|—2)2J1’2 “s
d _| m+ - - 2 _n_Z _ 1 .
Gpow( 0, — 7/2)+22, “(1—) & B*[6]—-1
n Hm+(,8) |5|
a=o,=\/—=28|1
e(— )™ o TN 4
+ Tad e’ (3.2 s
(|8 =1)**Hy_(BV[8]-1) +\/1+4|5|—1 L [6]—2)2
& “Bls-1) | -
IV. NUMERICAL EXAMPLES (4.6)

The solution to the scattering problem of surface waves Outside the vortex r’ >1) 7,=Re(past 7r), Where,
by a uniform vertical vortex depends on four dimensionlessvhatever the sign o8,
parameters. A first set includes the dimensionless vortex ra-
dius B>1 and the dislocation parameter=SM(c,/c,), _ _iym, 1\ @i (NO—vt)
which quantifies the wave front dislocation. Theq; aglready In8 ; (=) I, (Br7)e ' @7
appeared in |, with the same definitions and physical inter- N
pretations. A third parameter is the dimensionless capillary~OF Positivevalues ofé,

length =kl , and the last one is the dimensionless depth 1 , —

kh. In order to simplify somewhat the discussion, we use the S | d Hin, (Br7) N Km_(BV1+4r7) i(n6—vt)
single dimensionless parametérdefined in Eq.(2.27), in IR= = n |-|r1n (B) €n Kn (B 1+ 6) € '
place of the depth and capillary length. As an example, we N m- 4.9

take 6=8 that may correspond, for example, tie=1., kh
=v3/4, and §=—8, which may correspond tb=3l. and  where we have used the fact that

kh=3/4. In both cases, the hyperbolic tangent in the water

waves dispersion relatigf] is approximated to better than qa=py1l+é. (4.9
five percent by the two leading terms, the ones we are kee

oo . . Reor negativevalues of§,
ing in its series expansion.

Scaling radial distance with the vortex radius=r/a, HE (Br) HL (B[d]—1r")
the analytical expression of the surface displacement is sum;, — 2 d, m1+ +e, m- i(no—wt)
marized as follows, depending on the sign&finside the n Ho, (B) HY (BV]6]-1)
vortex (0<r’<1) we haven,=Re7;. - (4.10

For positivevalues of§,
where we have used the fact that

ga=pg8y|8 - 1. (4.11)
We do not give the details of the calculations of the co-
efficientsa,, b,, d,, ande,. Although their definitions are
where we have defined the following dimensionless wavdar more complicated, their behavior is very similar to the
numbers: previous casdsee ). As an illustration, absolute values of

those coefficients are plotted in Fig. 1 as a function of their
_ 5 1+6 a 2+ 6\2]Y¥2  index, and their rapid decrease suffices to indidateple
knaE(f)n:B E -1+ 1+47 1—n?m

77(;:2 (an‘]n(d’nr )+b In(enr’)

— n ) ei(n(}fvt), (4_1)
Jn(bn) I'n(en)

,  convergence of the corresponding series.
Since convergence of the series expansionszigs and
7R is not uniform, the number of terms to keep in the nu-
(4.2) merical evaluation of the infinite series depends on the value
of r'. In practice, the convergence of the series is compa-
\/7‘5 rable to the case of I, and we use roughly the same number of
Knd=@p=p > terms. We compute the patterns of the surface displacement
(4.3 inthe regionx'[,|y’|<5[(x",y")=(r' cos6r’ sin6)] by the
finite sum of Egs.(4.1), (4.4), (4.8), and (4.10 with |n|
For negativevalues ofs, <50 for =10 and|n|<30 for =5, but we keep more
terms,|n|<90 in Eq.(4.7). All calculations were performed
USiNng MATHEMATICA [7].
)ei(nﬂ W, (4.9 Let us first consider the case of positi¥eFigs. 2a), and
2(c) show the resulting displacements &+ +8, =5, and
a=1,2, and Figs. &), and 3c), for the same values af and
with new dimensionless wave numbers: 6, but 8=10. The dislocation of the incident wave fronts by

211/2

1+6 a 2+6
1+ 1+4—52— l—ngzm
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FIG. 1. Absolute magnitude of the neperian logarithm of coef- 5 1
ficientsa, (&), b, (b), d, (c), ande, (d), versusn in a log-linear }
plot. The parameters used in the calculations arel and 8 =t
=10. On the same graph, we display both cases of poséive -3 w
+8 (dot9 and negativeS= —8 (empty circle$. Note the asymme- ‘ | ‘
try with respect ton— —n, and the very quick decrease of the '5_5 3 -1 1 3 5 5_5 3 -1 1 3 5
coefficients.

x/a x/a

an amount equal te is clearly visible. The outward travel-
ing scattered wave is also visible. The interference patterns
between scattered and incident wave is very similar to the . .
corresponding pictures of I, for the same valuegaind a. there_V\iezpl_(l)_ththe surlface dlsplﬁ_cimentlﬁ)#l— 8, ,6’—f5,
This is confirmed by the comparison of the scattering cros§Nd &= L,.e. The spiral wave, which 1S clearly seen lor
section displayed in Figs.(d), and 4c), as discussed below. =2 [Fig. 2(d)],'|s very different from the correspondlng_flg—
Taking into account the dispersion greatly modifies the nu—lli.re of Ib[see dFI% Z]id) thl.]'h':oi If(r)ger r\]' arl]ues oB sholwn "]3
merical value ofw, but other corrections are small in the case’ 9% 3b) and 3d) for which 5=10 with the same values for

FIG. 3. Same as Fig. 2, fgg=10.

o é and « as before, the pictures are much more similar to the
of positive 6. bl .

In the case of negative, the interference pattern is S "fll_how wa erlfasi.t ined at a finite dist f h ;
strongly modified. This is illustrated in Figs(l8 and 2d), 0S€ results obtained at a finite distance from the vortex

are fully confirmed asyptotically far from it by the plots of

5 . 5 - the absolute value of the correction to the Aharonov-Bohm
JE R (a , ( scattering amplitude in both cases. The dashed line in Fig. 4
1 shows this correction in the shallow watérondispersive
e 1 s ! case, and the solid line shows the same correction in the
>~ ‘ > dispersive case, for a positivi= + 8 in Figs. 4a) and 4c)
1 and a negativéd= — 8 in Figs. 4b) and 4d). In the positive
i 3 5

A d

6 case, both corrections are almost the same, in agreement
with the results at finite distance shown in Figs. 2 and 3. In
the negatives case, apart for the smallest valuesmofsee

x/a x/a Fig. 4(b)], the corrections are markedly different. In the
negatives dispersive case, the scattering is much more iso-
tropic, and very different in amplitude. An obvious, but
somewhat formal explanation of this difference is the supple-
mentary functiorH, (8V]8[—1) in Eq.(3.25 compared to

Eqg. (3.24). Also, the index of this function isn_(n) that
takes imaginary values for smalbsitive n rather than for
small negative nas m, (n). This implies that the partial
amplitudes for exp{iné) and expind) are much more simi-
T lar to each other than in the shallow water case, for which
m_ is absent, and also more similar than in the case of posi-
x/a x/a tive 8, where the decrease of the corresponding function is
FIG. 2. Density plot of the surface elevation for the total wave 8XPonential. The appearance of an_algebra'caﬂs_‘/(ﬁ) de-
patterns for3=5, and several values of and 5. Respectivelyo  Creasing amplitude associatedrto. in the negatives case
=1, 6=+8: (@, a=1, 6=—8: (b), a=2, 5=+8: (¢), and @ restores the symmetry of the scattered wave.
=2, §=—8: (d). The gray scale is linear with surface amplitude A more physical explanation is as follows: Consider a
(arbitrary unit3. The dark ring indicates the vortex location, and the plane wave incident from the right on a counterclockwise
vortex rotates counterclockwise. The wave is incident from thevortex, as in Figs. 2 and 3. Above the vortex, the wave front
right. The box size is 18 10 in units ofa, the vortex radius. velocity is increased by advection, whereas it is decreased

=3 =3 =1L 1 3 5 =5 =3 =1
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(a)
1 : (b)
0.5 1
0 0
FIG. 4. Polar plot of the abso-
-0.5 -1 lute value of the correction to the
Aharonov-Bohm(i.e., poin} scat-
-1 o4 32 - 0 1 tering amplitude, in the case of
Scattering amplitude nondispersive waveglashed ling
2.5 -2 -1.5 -1 0.5 0 0.5 and in the case of dispersive
Scattering amplitude waves(solid line), for =5 and,
respectively: «=0.25, §=+8:
1.5 (c) (a), a=0.25, 6=-8: (b), [e%

=0.5, 6=+8: (c), and «=0.5,
0=—28: (d). In this last case the
dispersive wave scatters very dif-
ferently from the nondispersive
wave. The vortex location is
marked by the large dot; the vor-
tex rotates counterclockwise.

-1 -4 -2 0 2

Scattering amplitude

-2.5 -2 -1.5 -1 -0.5 0 0.5

Scattering amplitude

below the vortex. Consequently, the wave fronts should bengersion relation is excellent. The price to pay is the rather
towards the bottom of the picture, as they do. The othesmall valueB= 7. We take the vortex circulation such that
effect of the vortical flow is to add a wavelength below thea=1 in the shallow water approximation, for whict
vortex, which means that the wave numiedecreases be- =./gh=9.9 cm/s. Taking the dispersion into account, we get
low the vortex. Sincéh is assumed to be small, for positive §=1.4, c,=13.0cm/s,cg=18.4cm/s, anda=0.41. The

é the phase velocity increases with The phase velocity is  difference in the respective numerical valuesxd$ the lead-
thus smaller below the vortex than above, which enhanceing effect. The result is shown in Fig. 5. To obtain quantita-
the bending of the wave fronts, and reinforces the strongive agreement with an experimental situation, it may be suf-
asymmetry in the interference pattern of Fig&)2and 2c)  ficient to keep the shallow water approximation, but with the
and Figs. 8 and 3c), and in the scattering amplitude of actual value ofr obtained in the dispersive cafeg. (3.16.
Figs. 4a) and 4c). For negatives, the phase velocityle- It should be interesting to use a fluid with a very small
creaseswith k, and the effect of the dislocation is to make

the phase velocity smaller for the part of the wave front 10 =m T

above the vortex. This effect balances the effect of advec- (a) (b)

tion, and we understand why the interference pat{see

Figs. 2b) and 2d) and Figs. &) and 3d)] and the scattering s

amplitude[see Fig. 4d)] are much more symmetric than in >

the positived case, or than in the nondispersiv@é<0) case.

It is also reasonable that this effect should be more importan. -

for B=5 than forg=10, because the relative variationkn 10l i
ik

due to the dislocation is greater in the former case. The spira

waves are observed for negatidebecause the interference

pattern almost keeps rotational symmetry while smoothing FIG. 5. Density plot of the surface elevation for the total wave

the wave front dislocation in the forward direction. pattern calculated in the shallow water approximatiahand to
As a last illustration, we compare the wave patterns presirst order in fluids deptiib). The gray scale is linear with surface

dicted by the shallow water approximation and by its firstampiitude(arbitrary units. The dark ring indicates the vortex loca-

correction in powers of the fluid depth in an experimentallytion, and the vortex rotates counterclockwise. The incident wave
accessible situation. We suppose the fluid to be pure wategomes from the right. The box size is 2@0 in units ofa, the

of depth 1 mm; the vortex radius is 1 cm and the wavelengtivortex radius,8= 7 in both cases, but=1 in the shallow water
is 2 cm. Thuskh=7/10, and the approximation of the dis- case(a), anda=0.41, §=1.4 in the dispersive cag®).

o

N

N
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surface tension in order to obtain a negative valué while  lary lengthl.. When it is positive <v3l.) the wave pat-
keeping a small value okh for which the wave pattern tern is similar to the shallow water case. When it is negative,
should be extremely different from the shallow fluid layer for large values of the circulation, the wave pattern is very

approximation. different.
We hope that the calculations in the dispersive case will
V. CONCLUDING REMARKS help the comparison with experiments. Our calculations are

_ valid when the approximation tamd=kh—(kh)%3 holds.

We have computed the surface displacement due to a digs is a restrictive condition, but we believe that once dis-
persive surface wave interacting with a vertical vortex Whe'bersion is correctly taken into account in the definitionof
Fhe vortex core performs solid body rotatipn; the wavelengtr'the wave pattern given by the nondispersive case should be
is small compared to the vortex core radius and the particleo,ghly similar to the observations. Some discrepancies are
velocities associated with the wave are small compared t@ypected when the fluid depth is greater than the capillary
the particle velocities as;omated with the vorte>§. When th‘?ength (h>v31,), but in this case it is necessary to correctly
parameteia=vI'/2mc Cq is of the order of 1 or bigger, the 5pproximate the hyperbolic tangent by the first two terms of
wave fronts become dislocated. This parameter depends, {fie series, and in practice the effect should be observable for
the dispersive case, both on the phase and group velocity ¢f fjyig of small surface tensiofthus small capillary length
the wave, and tends smoothly toward the result of I in theynyy, However, it is quite possible that effects such as the
nondispersive limit. We thus give a proof in a perturbativegirg| patterns will persist qualitatively in the case of deep

fashion of the heuristic derivation of Bergt al. [3]. water, when our perturbative approach will no longer hold.
Formally, we proceed perturbatively around the shallow
water limit to obtain a fourth-order partial differential equa- ACKNOWLEDGMENTS
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